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Abstract-In this synthesizing work several interrelated variational principles are constructed for various 
field representations of dynamics of simultaneous transfer of heat, mass and electric charge, in chemically 
reacting systems at mechanical equilibrium or not. The underlying physical principle is invariance of the 
entropy production or energy dissipation. The variational framework, which stems from functionals of 
various thermodynamic potentials, is quite vast and diverse. It includes: nonstationary extension of 
Onsager’s variational formulation, gradient representations, vectors of thermal, chemical and mechanical 
displacements, potentials of thermal field, functional Hamiltonian formalism, Poissonian brackets, and a 
thermomechanical dissipative action. Each of these methods is supplemented by a physical assumption, 
which is in general not incorporated into the original variational formulation : this is the assumption of a 
local thermal equilibrium. The most original and valuable result is inclusion of chemical reactions in 
variational dynamics, with chemical nonlinearities governed by kinetics of mass action. A method was also 
successfully d.iscovered, based on equivalent variational problems, which makes it possible to show the 
equivalence of thermodynamic potentials at nonequilibrium, and, in particular, the practical usefulness of 
free energy functionals. Finally, an extended action approach for thermomechanical chemical kinetics in 
distributed systems was worked out. This should be important for biophysical systems such as, for example, 
contracting muscles, whose dynamics are described by dissipative Lagrange equations containing the 
mechanical equation of motion and equations of chemical kinetics (the Guldberg-Waage mass action law 

and its nonlocal generalizations). 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Recently, the introduction of the concept of a non- 
linear chemical resistance [ 1,2] has lead to a chemical 
equivalent of Ohm’s law, and shown that the Guld- 
berg and Waage law [2] can be the subject of nearly 
routine irreversible thermodynamics. The purpose of 
this paper is to expose various general variational 
methods of derivation of nonlinear chemical kinetics 
and accompanying thermal diffusional kinetics at 
mechanical equilibrium, terminating the treatment 
with an example of the inclusion of mechanical 
motion. The chemical kinetics corresponds to the 
Guldberg-Waage law as the ‘chemical Ohm’s law’, 
and the mechanical example to an extended Euler 
equation with a frictional term linear with respect to 
the velocity. 

The concept of the chemical resistance is simple, 
general and crucial for our purposes. To illustrate this 
concept, consider an open, multicomponent system, 
of n components undergoing N chemical reactions : 

The system contains species i with chemical potential 
,ui; T is the local temperature, and R the gas constant. 

The vf, and v”, are the forward and backward stoi- 
chiometric coefficients, respectively, for species i in 
reaction j. The advancement of the jth reaction is 
denoted by &, and its rate by & = dtj/dt or rp Since 
the chemical equilibrium constant for thejth reaction 
K, is given by the ratio of the forward and backward 
reaction rate constants, k$/k,b, the classical chemical 
affinity of thejth reaction can be expressed in the form 

An associated meaning is the action of a chemical 
reaction, or ‘chemaction’, which contains the molar 
actions of the components, &, which are the Lagrange 
multipliers of mass balance constraints in the action 
approach (see Section 7). The chemical potentials pi 
are related to the & and their time derivatives. When 
the frequency of the elastic collisions vanishes 
(w=r-‘=O) on the chemical time scale, 
d&/dt = -pi; a result known from theories of perfect 
fluids [3]. The operator d,/dt = &/iYt+ (ui* V) is based 
on the absolute velocity of the ith component in a 
laboratory frame. When diffusion is ignored all vel- 
ocities ui are equal to the common barycentric velocity 
u, and the operator becomes barycentric. The net stoi- 
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NOMENCLATURE 

A; 

Aj 

ai 

column matrix of extended affinities 
in entropy picture, equations (34) and 
(35) 
chemical affinity ofjth reaction, thejth 
component of the affinity vector A 
thermodynamic activity of ith 
component 

a = -X(U)/&I thermostatic capacitance 

C 

E 

e, 
F 

Hi 

HO 

h(t) 

I 

e 

J, 
JS 
L 

L, 

n 

Mi 
PO 
R 

R 
r 

s, s 

S” 
T 
t 
II 

V 

V 
W 

matrix 
vector composed of molar 
concentrations of components, ci 
total energy as the result of the 
minimization of the related functional, 
equation (61) 
molar energy per unit volume 
free energy as the result of the 
minimization of the related 
functional, equation (63) 
thermal displacement vector 
associated with the component flux Ji 
thermodynamic Hamiltonian based on 
entropy dissipation functions 
arbitrary function of time, equation 
(21) 
inertial matrix (Section 7) 
molar flux density of electric current 
matrix of independent fluxes of 
species, with molar fluxes J,, equation 
(6a) 
density of total energy flux 
density of entropy flux 
Onsagerian matrix of 
phenomenological coefficients 
dissipative (thermodynamic) 
Lagrangian 
number of components in the mixture 
molar mass of ith component 
dissipative momentum, equation (74) 
resistance matrix composed of 
chemical resistances R,, equation (29) 
universal gas constant 
vector of reaction rates per unit 
volume, the chemical flux vector 
total entropy and its Legendre 
transform, respectively 
entropy of unit volume 
local equilibrium temperature 
coordinate of physical time 
thermodynamic vector of independent 
intensities, equation (4) 
vector of linear velocity 
volume of the physical system 
modified matrix of conductances, a 
positive symmetric matrix in the 
second-order entropy functional, 
equation (16) 

W vector of Lagrangian multipliers of 
balance laws as independent kinetic 
intensities 

X vector of initial Lagrangian 
coordinates in thermomechanical 
problem 

X vector composed of independent 
thermodynamic forces 

X vector of spatial coordinates in 
physical space 

xi concentration of ith component in 
moles per unit mass of mixture 
(Section 7). 

Greek symbols 
A overall Lagrangian density of 

dissipative field 
V differential operator 
6 spatial operator of variational 

derivatives 
& mechanical displacement vector 
‘CJ modified progress variable ofjth 

reaction 
Pi molar chemical potential of ith 

component 
/Ii = p,M,M; ’ --pi transfer potential of ith 

component 
f b v,~, vii forward and backward stoichiometric 

coefficients for species i in reactionj 
vi, resulting stoichiometric coefficient for 

species i in reaction j 
V’ extended stoichiometric matrix defined 

in equation (35) 
tj progress variable of jth reaction 
4 electric potential molar action of 

component (in Section 7) 
% dissipative momentum, equation (75) 
U production density 
Z average time between elastic collisions 
x chemical displacement variable. 

Subscripts 
e total energy 
j jth reaction 
k kth component 
S entropy 
CJ dissipative property 
1, 2 initial and final time. 

Superscripts 

; 
entropy representation 
transpose matrix, transformed 
quantity 

, modified representation. 
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chiometric coefficient vij follows the standard con- 
vention [4]. However, the definition of the affinity, and 
that of the associated chemaction, follow the network 
convention [5]. The dissipation inequality holds in the 
network convention used here in the form Ajrj > 0. 
This convention insures that the rate of an isolated 
reaction and its affmity always have the same sign. 
This in turn allows one to write a ‘chemical’ Ohm’s 
relation with the positive resistance R, of the jth reac- 
tion understood as the ratio of the chemical force A, 
to the chemical flux r, : 

R, = A,,'rj = 1 (Vc-Vb)Pi/r, 
i= I 

= ,$, v,jpt/rj j = 1,. . . , N. (3) 

The expression of R, in terms of concentrations is 
crucial for any treatment of nonlinear kinetics. For 
the Guldberg-Waage kinetics of mass action the rate 
formula and the affinity formula (2) lead to the log- 
arithmic resistance [ 1, 21 

where c is the vector of molar concentrations. In ther- 
modynamic approaches to chemical systems, it is the 
resistance formula (4) rather than the mass action 
kinetics which is the starting point in the majority 
of basic considerations. One should appreciate the 
versatility of the chemical resistances and the related 
inertances Z, = TR, when treating chemical steady 
states, transients and nonlinearities. In particular, 
equation (4) leads immediately to the chemical dis- 
sipation function 4, = ( l/2) Ry-12 with the state depen- 
dent R,, and this di:ssipation function satisfies Onsa- 
ger’s local principle of minimum dissipation [2]. The 
steady states can be treated by a routine procedure 
leading to unknow:n rates of resulting reactions as 
ratios of overall aflinities to overall resistances [6]. 
Guldberg-Waage kinetics follow from these for- 
malisms a pasterim (rj = A,/R,) : however, their gen- 
eralizations are also possible as long as the standard 
phenomenological laws of Ohm, Fourier, Fick and 
Guldberg and Waage are only asymptotic formulae 
[7]. For very fast transients of frequency comparable 
with that of elastic collisions, t-‘, extended kinetics 
correspond to a generalization of the Guldberg and 
Waage kinetics ; thins generalization involving a term 
with the time derivative of the reaction rate. More 
importantly, in general formulations, chemical kin- 
etics are obtained in a unified treatment along with 
the kinetics of various nonchemical processes, i.e. 
transport and exch,ange processes. The example in 
Section 4 treats isobaric reaction-diffusion fields in 
this methodological way. 

Another example, in Section 7, shows coupling of 
chemical reactions with a mechanical displacement 
field, important in the theory of contracting muscles. 
In this extended physical situation, the Gibbs free 
energy, and, hence, chemical potentials, depend 
explicitly on nonmechanical displacements, and cor- 
rect nonequilibrium chemical potentials are necessary 
in the analysis. The correct result for the chemical 
potential is pk = @-M,u2/2, regardless of the 
thermodynamic potential used [8-111. This result is 
obtained only when a Lagrangian L used to define pk 
is modified by the constraint related term expressing 
the dependence of concentrations a’( 1 - CM,x,). The 
consequence of the term is the correction equation of 
the thermomechanochemical motion which comprises 
the frictional mechanical motion and chemical 
kinetics, very diverse phenomena whose synthetic 
effect is observed in various biophysical processes [12]. 

Some examples dealing with nonreacting systems 
are considered first, because of their relative sim- 
plicity : more and more complex chemical systems are 
then investigated. Our analysis of reacting and non- 
reacting continua is based on variational principles, 
an evergreen problem in dissipative thermomechanics. 
Since Onsager’s [13-161 and Prigogine’s [ 171 
extremum and variational principles for linear irre- 
versible processes, there have been numerous 
approaches to generalized principles which could 
describe nonstationary nonlinear evolutions. Gyar- 
mati’s quasi-linear generalizations [l&20], while of 
considerable generality, belong to the class of the 
restricted principles of Rosen’s type [21] or local 
potential type [22], where some variables and/or 
derivatives are subjectively ‘frozen’ to preserve a pro- 
per result. Essex [23] has shown the potential of mini- 
mum entropy formulations to yield nonlinear balance 
equations for radiative transfer. Mornev and Aliev 
[24] have formulated a functional extension of the 
local Onsager’s principle. With a caloric coordinate, 
Grmela and Teichman [25] stated a negative-entropy- 
based H theorem as a proper setting for the maximum 
entropy in Lagrangian coordinates. 

Grmela [2629] and Grmela and Lebon [30] have 
worked out an important two-bracket formalism, with 
Poissonian brackets and dissipative brackets, the lat- 
ter being the functional extension of the Rayleigh 
dissipation function [31]. With applications to 
rheology, the bracket approach has been sys- 
tematically exposed in a recent book [32]. Two- 
bracket theorems are not associated with an extremum 
of a definite physical quantity, however ; for that pur- 
pose, the single Poissonian bracket and a Hamiltonian 
system are necessary. However, another approach [33, 
341 has introduced certain potentials, similar to those 
known in the theory of electromagnetic fields, and 
related integrals. Their application to nonreacting sys- 
tems has proved very useful [33-361. Yet, the inclusion 
of the chemical reactions has required treating chemi- 
cal sources as given functions of time and position. 
Recent approaches to coupled transport processes, 
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based on a functional expression for the second law, 
with Lagrange multipliers absorbing balance con- 
straints, have been, so far, restricted to nonreacting 
systems, both parabolic [37, 381 and hyperbolic [39]. 
These approaches may be regarded as equality 
counterparts of Liu’s multiplier method [40], which 
deals with the second law in an inequality form, and, 
as such, leads to qualitative rather than quantitative 
results. Anthony’s variational method [4145], which 
uses a ‘field of thermal excitation’, a thermal analogue 
of quantum wave function, and certain reaction 
potentials, remains, to our knowledge, the only gen- 
eral treatment of distributed reaction-diffusion sys- 
tems via a variational principle, at the expense, 
however, of an undefined physical origin of these 
potentials and their relation to the mass action law 
]461. 

Chemical reactions with nonlinear kinetics have 
long remained excluded from exact variational for- 
mulations. An important step towards their inclusion 
was the introduction of nonlinear chemical resistances 
[ 1,2,47-501. With these quantities, which correspond 
to the mass action law in the works quoted, nonlinear 
variation and extremum formulations for lumped sys- 
tems have become possible [49-531. In the present 
work, these formulations are generalized to distributed 
reaction-diffusion systems in the field (Eulerian) rep- 
resentation of the accompanying transport phenom- 
ena. 

The admissibility of a variational formulation calls, 
however, for substantiation in cases when irre- 
versibility enters into the issue. A system of differential 
equations admits a variational formulation if, and 
only if, it is self-adjoint [54-591, i.e. when stringent 
conditions for partial derivatives of the related differ- 
ential operator are satisfied [5459]. It is also known 
that typical equations of irreversible processes are, as 
a rule, not self-adjoint [58, 601. 

A pertinent argument is valid though : while equa- 
tions of irreversible processes do not admit variational 
formulation in the state space spanned on their own 
dependent variables (this is the situation where the 
nonself-adjointness applies), the so-called composite 
variational principles in the extended space spanned 
on these state variables and certain new variables, 
called state adjoints, is always possible [54, 591. In 
fact, all successful recent variational formulations for 
irreversible continua always involve the space expan- 
sion. This claim also refers to formulations which use 
higher-order functionals [33-361, which can be broken 
down to those based on the first-order functionals 
in an enlarged space, as well as some action-based 
approaches to irreversible continua [43, 511 and 
reversible continua [62-67]. Reviews and books on 
this subject are available [68-731. With these results in 
mind, the conservation laws and the idea of minimum 
dissipation in the case of fields [4, 741, here we search 
for the extrema of thermodynamic potentials [75] of 
inhomogeneous diffusion-reaction systems. 

In recent works on lumped systems [76] and con- 

tinuous system [38, 391, the necessity of a distinction 
between the standard Gibbsian thermodynamic inten- 
sities u (the temperature reciprocal and Planck chemi- 
cal potentials), which are the partial derivatives of the 
entropy with respect to energy and mole numbers, 
and their transport counterparts or the Lagrangian 
multipliers of balance equations in thermodynamic 
functionals, has been discovered. While both u and w 
may play a role in these functionals, the distinction is 
important only away from local thermal equilibrium. 
It is stressed that the distinction is necessary only when 
a dynamic behavior is taken into consideration, as 
only then are the instantaneous potentials of transfer 
at a definite point of a continuum not necessary equi- 
librium quantities. It is not relevant for situations and 
models which ignore any dynamic development, such 
as, for example, typical models of the maximum 
entropy formalism [77], in which the Lagrange mul- 
tipliers refer to the final state of equilibrium rather 
than to the variety of intermediate states. 

Due to the commonness of the local equilibrium 
in real physical systems, the two quantities u and w 
coincide for the large majority of physical situations. 
Therefore, the condition u = w should a posteriori be 
imposed for most models of heat and mass transport. 
As is commonly known [4] in the limiting local equi- 
librium situations one can combine the conservation 
laws and phenomenological equations to yield the 
equations of change. The latter are therefore equation- 
dependent with respect to the former. On the other 
hand, away from local equilibrium, the equations of 
change follow independently of the conservation laws 
and phenomenological equations. However, it is just 
the condition u = w that drives one back to the local 
equilibrium situation (more restricted from the physi- 
cal viewpoint than any local disequilibrium). These 
effects link the equilibrium and disequilibrium descrip- 
tions of continua in a natural way. They hold in both 
the one component and the multicomponent case, 
with respect to both the temperatures and chemical 
potentials. 

In this work, these effects are discussed by means 
of a few novel variational principles of nonequilibrium 
thermodynamics, in several new and important 
contexts, such as : 

(1) invariant functionals and gradient rep- 
resentations using Biot’s vector of thermal dis- 
placement [78] and the potentials of thermal field 
introduced recently [33, 341; 

(2) inclusion in a variational or extremum principle 
of chemical reactions and chemical nonlinearities 
governed by the mass action kinetics [46] : 

(3) significance of various thermodynamic potentials 
at nonequilibrium, and, in particular, the practical 
role of free energy functionals ; 

(4) relation between Lagrangian and Hamiltonian 
descriptions (the latter with a bracket formalism 
exposed) ; 

(5) physical limitations on results of variational 
analyses. 



From the practical viewpoint, item 2 is of special u=(T-‘,p,T-‘,j&T- )...) IZ,_,T-‘,-qw’) 
importance as it m,akes it possible to solve complex 
partial differential equations of reactiondiffusion (7) 

processes with direct variational methods [79]. We 
also succeeded in (discovering a method, based on 

with & = p,,MkA4; --pk. Their gradients X = 
Vu = (VT’, VP;’ . . . -V(4T-‘)) are independent 

equivalent variational problems, which makes it poss- 
ible to show the equivalence of various ther- 

forces. The densities (6b) and transfer potentials (7) 

modynamic potentials at nonequilibrium. The prob- 
are the two sets of variables in the Gibbs equation for 

lem is known to ‘be difficult, and so far remains 
entropy density s, = ps of an incompressible system 

unsolved, in an exact way. The equivalence conclusion 
with mass density p = XM,c,. The differential of the 

is restricted to small deviations of thermodynamic 
entropy density in terms of the vector C is ds, = II - dC. 

Conservation laws, equation (5), are built into the 
potentials from a global equilibrium, in agreement 
with classical statistical mechanics [SO]. 

entropy functional, equation (8), with the help of 
the vector of the Lagrangian multipliers w = (w,, w,, 

The system considered is composed of components 
with various transport phenomena and chemical reac- 

wl,. . , w,_~, IV,). The extremum value of the mul- 

tions in the bulk. The components are reacting but 
tiplier w in the entropy functional, equation (8) is the 
vector of the kinetic conjugates of the extensities C, 

neutral [81-831, obeying the phase rule [84]. As shown 
by Sundheim [81], this setting leads to independent 

equation (6b). On the extremal surfaces of the entropy 
functional (8), the vector w coincides with the trans- 

fluxes of mass, energy and electric current. For an 
ionic description, see ref. [85]. The macroscopic 

port potential vector u, equation (7), in the limiting 

motion of the system is neglected by the choice of 
situation of the local equilibrium. 

The coincidence u = w does not occur away from 
the vanishing baryc:entric frame, and an assumption 
about the constancy of the system density, p, con- 

any extremal nonequilibrium solution, and, therefore, 

sistent with the mefchanical equilibrium assumption. 
w and u are generally two distinctive sorts of field 
variables in the entropy functional equation (8). As 

This is an assumption which makes the effects con- 
sidered more transparent. With this assumption, the 

long as the constraint w = u is not imposed, they con- 

total mass density, p, is a constant parameter rather 
stitute two fields independent of each other. They may 

than a state coordin,ate, and a reference frame in which 
be interpreted, respectively, as the kinetic (Onsa- 

the whole system rests easily follows. In short, one of 
gerian) and thermodynamic (Gibbsian) intensities, 
which coincide in a stable extremal process with local 

the main reasons for using variational approaches 
(leaving aside, of course, their computational virtues) 

equilibrium. Any kinetic intensity is the Lagrangian 

is our general research direction towards extending 
multiplier of the related conservation law, whereas 

Callen’s postulational thermodynamics to inhomo- 
any Gibbsian intensity is the appropriate partial 
derivative of the entropy with respect to the adjoint 

geneous thermodynamic systems. extensity. On extremals w = II, meaning that the 
extremal Lagrangian multipliers coincide with the 
components of the entropy gradient in the state space 

2. CONTINUOUS SYSTEMS WITH HEAT AND of Ci. In a limiting local equilibrium situation, wi con- 
MASS TRANSPORT verge to the static (equilibrium) intensities, equation 

In the entropy representation, for a continuous fluid 
(7), otherwise they converge to certain nonequilibrium 

mixture under mechanical equilibrium, the con- 
intensities that are still the partials of an extended 

servation laws are 
entropy although they then depend on both C, and J, 
(extended thermodynamics). 
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To simplify the notation the single-integral symbols 
are used for multiplied integrals in the physical space- 
time. The governing functional describes the second 

This is the matrix notation [4] of all conservation laws law between the two fixed times t, and a subsequent 

consistent when J is the matrix of independent fluxes : t2 : 

J=(J,.,J,,J, ,..., J,_,,i)T (6a) -J,(J,u)*dAdt 

(the superscript T means the transpose of the matrix), 
and, for the corresponding column vector of densities + 
C, 

C=(e,,Cl,C2 ,...) c,_l,O)T. (6b) +w* (y +V*J)}dI’dt) (8) 

The nth mass flux J,, has been eliminated by using the 
condition CJ,M, = 0 for i = 1, 2, , , n. The last where J,(J,u) is simply the product J *u. A simple 
component of C vanishes because of the electro- derivation of such functional structures from an error 
neutrality. The independent transfer potentials are criterion has been given in earlier works 139, 521. By _ _ 
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simple application of the divergence theorem to the w 
term of equation (8), it was also shown that in the 
steady-state case of a system satisfying w = u the 
above functional can be broken down to Onsager’s 
functional : 

min 
S( 

LL-’ : JJ-J*Vu dV. 
Y 2 > 

(9) 

At the steady state, when only J is varied and w con- 
verges to u on the extremal surfaces, the Onsager’s 
functional, equation (9), and the kinetic equation 

J=L*Vu (10) 

follow from equation (8) as the only steady-state for- 
mulae. 

In the unsteady situation, equation (8) yields, as the 
Euler-Lagrange equations with respect to the vari- 
ables u, J and w, a more general result. It is a qua- 
silinear set representing (at w = u) the standard model 
of the unsteady transfer of heat, mass and electric 
charge. The Euler-Lagrange equations of the entropy 
functional with respect to the variables w, J and u are, 
respectively : 

at(u) ,t+V.J = 0 

L(u)-’ *J = VW (11) 

a(u)$ = V.(L.Vu) (12) 

where a(u) s -X(u)/au is the thermodynamic 
capacitance matrix or the negative of the entropy 
Hessian. From the viewpoint of the completeness of 
the physical equations as extremum conditions of S, 
the second law Lagrangian used, i.e. the integrand of 
space-time integral in equation (8), does a good job 
since it leads to all pertinent equations, the property 
which is essentially not obeyed for older models, as 
we will soon see. The conservation laws, equation (5) 
are recovered, the other results are the quasilinear 
phenomenological equations and the equations of 
change. The last equation is the Fourier-Kirchhoff 
type matrix equation of change which links the fields 
of temperature, chemical potentials and electrical 
potential. At the local equilibrium, when all states of 
the system are located on the Gibbs manifold, the 
equality w = u holds, and equations (5), (11) and (12) 
become dependent. This is the well-known classical 
situation, in which only a subset of possible solutions 
is realized in practice. 

3. GRADIENT INVARIANT FUNCTIONALS AND 
GRADIENT REPRESENTATIONS 

To support the conviction that nature can use only 
a part of solutions offered by a mathematical theory, 
consider a different variational formulation for the 
same system which uses the so called Biot’s [78] ther- 

mal displacement vector, H, in the integrand of the 
entropy functional. Actually, as long as the system is 
multicomponent, one has to use a set of such vectors. 
They are associated with the energy flux, component 
fluxes and electric current : 

H=(H,,H,,H,,...,H,-,,H,,)T (13) 

and refer to each vector component of the matrix (6a). 
Since each flux and each density satisfy the gradient 
representations 

aH 
J=% (14) 

and 

C = -V-H (15) 

the conservation laws are similarly satisfied. Indeed, 
the addition of the gradient of equation (14) to the 
partial time derivative of equation (15) yields equation 
(5). 

To derive the Euler-Lagrange equations from a 
functional based on the representations, equation (14) 
and (15), it suffices to substitute them into the pro- 
duction part of the entropy functional, equation (8). 
Restricting, for brevity, to a linear system (the case of 
constant coefficients) yields 

12 
s, = s i iL-’ :aHaH 

r,.v at at 

+ ~VV: V(V.H)V(V.H) dvdt (16) 
> 

where the positive symmetric matrix W has been 
defined as 

W 3 a-‘TLa-‘. (17) 

The matrix Euler-Lagrange equation for the above 
functional is 

L-’ 5 -WV’(V’H) = 0. (18) 

After using the representations, equations (14) and 
(15), equation (18) can be given in the form 

L-1 $ fWV2(VC) = 0. (19) 

Equation (19) holds with the conservation laws, 
equation (5), contained in the representations, equa- 
tions (14) and (15). Thus the system is now charac- 
terised by equations (14), (15) and (19). (Note that 
equation (19) followed from equation (16) without 
any prior recursion to the condition w = u, and that 
it can also be obtained by eliminating of the mul- 
tipliers w from equation (11) and (12).) However, 
when one wants to pass to the set of equations (5), 
(11) and (12) from this model, a more general set is 
admitted by equations (14), (15) and (19) : 
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at(u) 
Yr+V.J=O (5) 

L(u)--’ *J = Vw+c(x) 

arv 
a(u) 2; = V *(LVu) +h(t) 

(20) 

(21) 

where c(x) and h(t) are arbitrary functions. Based on 
the last result, a claim that the physical behavior 
should be described by equations (14), (15) and (18) 
rather than by any other sets would be not entirely 
appropriate from the stand-point of anyone who (pre- 
ferring the traditional form of heat equations) wants 
to operate with all three equations (S), (11) and (12). 
Again, the only reasonable way to resolve the dilemma 
is to restrict the strut ture of the independent equations 
(5) (20) and (21) to the range implied by an exper- 
iment or microscopic: transport theories. This, in turn, 
means that their dependence is associated with taking 
w = u, along with c(x) = 0, h(t) = 0. Thus it is the 
physics of the problem which requires one to restrict 
to the case when c(x) = 0, h(t) = 0 and w = u. 

Another example illustrating this sort of problems 
is also in order. The origin of the integrand of equation 
(8) lies in phenomenological equations, which have 
been squared in the form L-‘(u)J-Vu = 0, to gen- 
erate an error expres,sion based on the resistance [39, 
521. For the same parabolic problem, with a concept 
of potentials [33, 341, in the linear case, Gambar and 
Markus [36] have applied a dissipative Lagrangian 
obtained via squaring the variational adjoint of the 
equation of change [equation (12) at u = w]. This 
variational adjoint, which is next identified with II, is, 
in the present notation, 

u = -a% -LV2& (22) 

(their p& = -Us;‘). Their Lagrangian is second 
order : 

W,4,,,4,x,) = f (a: +LV24)2 <=~u2>. 

(23) 

This Lagrangian leads to the Euler-Lagrange equa- 
tion 

a$ (a$ +LV2rb)-LV2 (a$ +LV2f$) = 0 

(24) 

which is satisfied by (equation (22) in the form 

-++LV2u = 0. (25) 

This is the linear form of the Fourier-Kirchhoff 
equation. This approach has resulted in a number of 
original interpretations of nonequilibrium thermo- 
dynamic [34-361. Tihese ingenious analyses, and a 

field theory constructed on the basis of the Lagrangian 
equation (23), provide equations of change, and extra 
physical conditions (obtained from some invariance 
requirements) should hold to obtain the phenom- 
enological equations or conservation laws from equa- 
tion (23). This conforms with our earlier conclusion 
that associated physical analyses should accompany 
the variational results. Indeed, it is easy to see that 
equation (24) is satisfied in the form of equation (25) 
not only by equation (22) but also by the more general 
representations containing a functionf(x, t) : 

u = -a$ -LVZr$-f(x,t) (26) 

provided that the functionf(x, t) obeys the equation 

$(x, t) +V2f(x, t) = 0. (27) 

An example of such function for a one-potential pro- 
cess is f = (1/6)x2- t). In this example, the rep- 
resentations, equation (26), have been rejected on 
account of the simpler representations, equation (22), 
regarded as, perhaps, ‘more physical’ since they obey 
the gradient invariance. One may argue that the 
adjoint quantities are ‘nonphysical’ anyhow, so it does 
not matter which representation, equation (22) or 
equation (26), is used. However, this argument is not 
always true since some adjoint quantities have, with- 
out doubt, a well-defined physical meaning. One 
example is momenta of classical mechanics, which are 
adjoints of coordinates. Another example is rates of 
dynamic equations with inverted signs of resistances, 
which describe fluctuations around equilibrium. 
Therefore, the restrictions imposed on definitions of 
potentials may also have physical reasons (consider, 
for example, restrictions on electromagnetic potentials 
P361). 

4. REACTION-DIFFUSION SYSTEMS AND 

CHEMICAL NONLINEARITIES 

Consider now a generalization of the entropy pro- 
duction functional with two chemical dissipation 
functions 

3 
so = 5 (1 I,,V 

~L-~(u):JJ+~L~u):VUVU 

+ ;R:rr+ ;R-i :(v’u)(v’u) 

II > dVdt (28) 
where the term v’=u is an extended vector of the chemi- 
cal affinities in the entropy representation, A”, defined 
below, and both R terms refer to chemical dissipation 
described by the nonlinear chemical resistances R. The 
chemical resistances (of the entropy representation) 
obey the logarithmic formula [ 1, 2,471 
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Rln[(k:fid)/(k?fid)] 
extra stoichiometric coefficients voj and v,,~ are assumed 
to vanish, the considered product is the vector 

MC) = nr N (29 
k;i~&k,bfj& 

i= I 
Here a, = a,(C) are the activities expressed as func- 
tions of the actual state. 

Now by using the standard mass conservation law 
for each chemical reaction 

VOI . . . v,, . ..V”. 

. . . . . . . 

% . . v,j . vnj 

. . . . . . . 

vON . VfN . V,N 

- T-' - 

n 

1 VliMj = 0 (30) 
i= I 

along with an appropriately extended stoichiometric 
matrix 

I vi, = 

vo1 . ..VOj . VON 

. . . . . . 

vi1 . . vij . . ViN 

. . . . . . . 

Vfll . .v,j . . .V”N 

L . . J 

v,,T-'+viJ,T-'-v,,+T- 
. . 

v~~T-'+v~~~~T-'-v,~~T- 
. . 

vONT-’ +v~N&T-’ -v,,&T-’ 
. . . 

-T-'vTp= T-‘A (36) 

whose components are ratios of the classical affinities 
Aj and the temperature T. 

and the independent transfer potentials 
Consequently, extension (34), can be used in the 

variational principle associated with the minimum of 

u =(T-',~'T-',~2T-',...,~n_lT-',-~T-') the integral, equation (28). A gauged form, obtained 
by applying the divergence theorem to the w term of 

(32) equation (28) can also be used : 

. 

p,T-' 
. 

-4T-' 

with pk = ~,,h4J4,’ -Pi k= 1, . . . . n (the tilde 
potential of the nth component vanishes and plays 
no role in the definition of u), the classical affinity 
definition of the jth reaction 

A, = - k vij,ui = -((~~p)~ (33) 
i=l 

can be transformed into its entropy-representation 
counterpart and then extended [mark + in equation 
(34)] to an expression which can deal with all com- 
ponents of the vector, equation (32) : 

A; = -t T-'vijpi = - f: T-'v~~(~~M,M,'-~~) 
i=l r=l 

(34) 

s: = 
12 1 s { II,V 

zL-‘(u):JJ+;L(u):VuVu 

1 1 
+ ?R-’ :(v”u)(v’~u)+ ZR:rr-C(~); 

-J-VW-w.v’r dVdt. (37) 
1 

As shown in Section 6 this form is more suitable than 
the original functional, equation (28), for setting the 
Hamiltonian formalism. 

The Euler-Lagrange equations of the functionals, 
equation (28) or equation (37), with respect to the 
variables w, J, r and u are, respectively, 

aw ,t+V*J=v’r (38) 

where 
L(u)-‘*J=Vw (39) 

. . . . . . . . 

rT 
V(j = vOj . . . v,, . . . V"j 

vON . VfN . . V”N 

R(u) * r = V’~W (40) 

(35) a(u) $ = V *(LVu) - v’R- ’ A”(u) 

“ZW v *(LVu) - v’r (41) 

In this extended affinity the component index changes where a(u) s -X(u)/& and A” = v’~u. The con- 
from 0 (energy), through 1, 2.. n- 1 (independent servation laws, equation (38), contain the production 
components), to n (electric current). To illustrate how terms which are nonvanishing for i = 1, . . . , n. For 
the extended vector A; works, multiply the trans- the energy and the electric charge (i = 0 and i = n) 
formed stoichiometric matrix, equation (35), by the the production terms do not appear because these 
transport potential vector, equation (7). As long as all quantities are conserved. (The production terms do 
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not influence the form of the Onsagerian transport 
equations, equation (39).) The chemical Ohm’s law is 
described by equation (40). The matrix equation of 
change, equation (41), which links the fields of tem- 
perature, chemical potentials and electrical potential, 
does contain sources. Now one should note that the 
numerator of equation (29) is the chemical affinity 
A” = V’=U [6]. Thus, provided that the local thermal 
equilibrium limit takes place, i.e. u = w, and the 
chemical resistances satisfy equation (29), equation 
(40) is strictly equiva.lent with the mass action kinetics 
of Guldberg and Waage. The limiting sources in equa- 
tion (38) and (41) are described by the vector 

VOI . ..v.j . ..VON 

. . . . . . . . . 

Vi1 . . . v,,. . .ViN 

. . . . . . . . . 

VfZl . . . V”, . V”N 

rl 

. . . 

. . . 

- -rN 

0 

1 1 ‘0’ 1 
(42) 

In the above treatment, the energy and electricity 
play the role of massless components. However, it is 
interesting to note that one might extend the mass 
conservation in each chemical reaction, so that certain 
molar masses associated with the energy and elec- 
tricity could be assumed in the conservation equa- 
tions : 

in+ 1 

c VVMi = 0. 
i=O 

We briefly outline changes caused by the use of equa- 
tion (30’) in place of equation (30). In order not to 
change the indices accepted earlier (i.e. preserve the 
index n for the electricity), to the nth mass flux J, the 
extra index nf 1 is iassigned for a while in the above 
expression. This mass flux is next eliminated, as 
before, by using the condition ZJ,M, = 0 applied for 
the whole set of entities, i = 0, 1, 2 . n, n+ 1. It is 
suitable to express each independent flux in molar 
units, to operate with (Jo = Je/c2Mo, J, . . . J,_ , , and 
i = J,/M,,). According to the relativistic link between 
the energy and’mass,, the representation of the energy 
flux in terms of Jo contains the coefficient c2Mo/T 
before Jo in the c:lassical formula describing the 
entropy flux in terms of all (dependent) fluxes. The 
elimination of the last mass component leaves the 
mass transfer potentials unchanged. However, the 
usual temperature is no longer the exact potential of 
the energy transfer : 

u =(L70M;‘c-2T-‘,/&T-‘, 

j&T-‘, ..,&,T-‘, -$T-‘). (7’) 

(Again, /& = ~&fkiM;’ -pkr k = 0, 1, . . , n, where 
the last value n refers to the electric flux and, again, 
the tilde potential of the eliminated mass component 

vanishes and plays no role in the definition of u.) For 
p. = - Moc2, the tilde chemical potential follows 

jlo = pL,MoM,’ •t Moc2 (43) 

as the driving potential for the mass-energy flux 
Jo = J,/c’M,. This procedure yields in equation (7’) 
the following effective temperature reciprocal (associ- 
ated with the energy flux J, in the traditional units) : 

F-1 = PO - ~ = T-‘(1 +pnM,‘/c2). 
TMoc2 

(4) 

Hence, only for c+ cc can the classical temperature 
be an exact potential for the energy transfer. A cor- 
rection can also be found for the electric potential 

6 = ~-K&M,’ (45) 

which is attributed to the finite molar mass of elec- 
trons. Only for Mel/M, = 0 (massless electrons in com- 
parison with molecules) can the traditional electric 
potential be an exact potential for the electricity trans- 
fer in descriptions using an independent set of fluxes. 

5. THERMODYNAMIC POTENTIALS AND 

VARIOUS REPRESENTATIONS OF 

DISSIPATION 

It is the entropy function which is the potential 
in the governing functional, equation (8). From an 
equivalent expression of this functional, in the form 
of the vanishing integral 

12 
min s (1 r,.v 

:L-‘(II) :JJ+ :~(a) :VuVu 

+ +:rr+ $-’ :(v”u)(v”u) 

(46) 

one can pass to various thermodynamic potentials 
associated with appropriate constraints. For any new 
thermodynamic potential there is no Lagrange mul- 
tiplier before the four-divergence of that ther- 
modynamic potential in the functionals like equation 
(46). Hence, one can derive the multiplier-free four- 
divergence of a new thermodynamic potential by tak- 
ing the product of the integrand of equation (46) 
and the reciprocal of a pertinent Lagrange multiplier. 
There are some practical limitations when using this 
rule though. The concentrations of individual com- 
ponents are neither typical nor really suitable to be 
new potentials, due to the presence of the mass-source 
terms in mass balances. However, the balances of 
energy-type quantities, such as energy, free energy 
etc., are convenient for this purpose. 



3476 S. SIENIUTYCZ 

How this approach works is illustrated by con- 
structing the governing functionals for the thermo- 
dynamic potentials of energy or free energy. Writing 
the integrand of equation (46) as follows : 

rnin~~~~T_, i {bTL,(u):JJ 

+~TL(u):VuVu+~TR:rr 

+ $R)’ :(V”Tu)(V’TTu) 

+ t Twk 
aCk (u) 

i= I 
,,+V.Jk-(V’r)k 

-T(~+V*J,)}dI’dl) = 0 

one can pass to the energy representation of ther- 
modynamics. This will be done soon [equation (59)] 
after prior discussion of some relevant expressions of 
the entropy production which imply suitable dynam- 
ics in various frames. Take into account that, in terms 
of the fluxes and forces used, the entropy production 
and the entropy flux take the form 

gS = J;VT-, -;$, Ji.V(piT-‘) 

-i*V(qiT-‘)+A”*r 

“-1 
= J;VT-‘+ c Ji*V@,T-‘) 

i= 1 

+i.V(-4T-‘)+A”*r 

= J.Vu+A”.r 

and 

n 
J, = T-’ Je-cpkJk-& 

I > 

n-l 

= T-’ J,+ 1 pkJk-@ = J*u. 
1 > 

(48) 

(49) 

In the energy representation, the entropy flux J, 
replaces the energy flux J, of the entropy rep- 
resentation as an independent variable, whereas the 
other fluxes remain the same. From the last equation 
written in the form 

(rZ, = ~,,M,$f;’ --Pi) and with the help of the ident- 
ities of the type 

7V(&T-‘) = V&--&T-‘VT (51) 

the transport part of the entropy production oi trans- 
forms as follows : 

I 

n--l 
a: = J-Vu = --T-l J;T-‘VT- 1 Ji 

i= 1 

*TV(/l,T-‘)+i*TV(qST-‘) 

i( 
n--l 

= -T-’ TJ,- 1 /lkJk+& *T-‘VT 
I > 

n--l 

- j;, J, * TV&T- ‘) + i* TV@T-‘) 

whence 

n--l 
ef = J-Vu = -T-l J,VT- 1 J,Vpk+i*V4 

I 

= - T-‘J’.Vu’. (53) 

This result leads to the total entropy production in 
the two forms 

o, s J*Vu+A’*r 

= -T-lo, = Tp’(J’.Vu’+A*r) (54) 

where the second line expression contains the energy 
dissipation 

oe = -J’*Vu’-A-r. (54’) 

The chemical affinities A” and A = TA’ in these 
forms are consistent with the classical definition, equa- 
tion (33). The two sets of the phenomenological equa- 
tions are nonprimed and primed forms of equation 
(lo), with the positive transport conductances L and 
L’, and chemical resistances, linked, respectively, by 
L’ = TL and R’ = RT. With the components of the 
entropy four-flux (s,, Js) as independent variables, the 
matrix of independent fluxes is 

J’=(J,,J,,J, ,..., Jn-,,qT (55) 

and the corresponding column vector of new densities 
C’ is 

C’=(s,,c,,c, )...) C,_,,O)T. (56) 

The new independent transfer potentials are 

u’=(-T,p,,pq,...,A-,,-~) (57) 

(j& = p,,it4,M;’ -&. Their gradients are inde- 
pendent forces of the transport processes, and they are 
associated with the Gibbs differential for the energy 
density e, = pe, written in the form 

de, = -u*dC’ (58) 

(compare this with ds = u - dC). In order not to 
change the signs of the Lagrange multipliers, a new 
vector u’ has been defined in equation (57) so that 
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it appears with a minus sign in equation (58). This 
definition also preserves a form invariance of the two 
production expressions in equation (54) with the con- 
formal factor T-‘. 

An essential result will now be shown that, due to 
the transformation of the Lagrange multipliers w to 
the new frame (primed variables w’), corresponding 
with new constraints, the energy density e, becomes 
the new potential of the system, subject to the con- 
straint of the sourceless entropy. In the new rep- 
resentation, with the state variables C’, J’, the gov- 
erning functional, equation (47), becomes 

rnin[:IvT-’ ({k L’- ’ (u’) : J’J’ + ; L’(u) : Vu/Vu’ 

+ ++ &--I :(v’=“‘)(V’=“‘) 

+ V . Jk(J’, u’) 

+ i wk’ 
ac,(“l) at- + V * & - (v’r)k 

k=l 

+ w, 
0 

Here J, = - J’u’, wb = - T, in agreement with equa- 
tion (50). The transformation of the Onsager’s con- 
ductivity matrices L follows the established rule 
L’ = P-“LP-’ wh’en the transformation of fluxes is 
of the form J’ = Pd ; see, for example, ref. [4]. As in 
the entropy representation, the introduction of 
dummy stoichiomelric coefficients, which vanish when 
k = 0 and k = n, is needed to take formally all con- 
sidered entities (the entropy, components and electric 
charge) in the stan’dard vector of chemical affinities, 
A = --u’P. The corresponding transformation to the 
extended affinity, which deals with all independent 
potentials [the vector u’, equation (62)], is 

A, = - i vtjpi = -- f: vij(pnM,M,’ -pi) = “2’ vii/Ii 
i= I i=l i=l 

+(u’~u’)~. (60) 

In the extended affinity of the energy represen- 
tation, A; = (v’~u’)~, the component index changes 
from 0 (entropy) through 1,2, . . . , n - 1 (independent 
components) to n (electric current). The stoi- 
chiometric matrix coincides in the new frame with the 
original one, equation (31), with the same dummy 
coefficients, provided that the dissipation expression 
in the first line of equation (59) is now assigned to the 
total energy. It follows from equation (59) or equation 
(60) that such an interchange of the roles of the energy 
and entropy is optional for isothermal processes, but 
it is necessary whenever the temperature T is not con- 
stant (thermal inhomogeneity). 

In view of the positivity of the temperature 

coefficient T’ before the angular bracket ( ) of equa- 
tion (59) it is clear than an analogous integral obtained 
by taking T-’ off the integral, equation (59), vanishes 
on its extremal surfaces as well ; this procedure shows 
how one is led to the energy functional. Such a func- 
tional contains, as its integral, the energy dissipated 
plus the product of new Lagrange multiplier vector 
and the appropriate balance constraints : 

-E(t2) = min( -E(r,)+J]:II,(J’,u’).dAdr 

5 1 
+ s i tl,V 

zL’-‘(u’):J’J’+;L’(u’):Vu’Vu’ 

+ iR’:rr+ $W))’ :(v’~u’)(v’~u’) 

+ w, . acw -+V.J’-v’r 
at 

Consequently, it is the energy, not the entropy, 
which is the potential function for the primed set of 
constraints and associated variables. This result rep- 
resents the extension of Callen’s [75] postulational 
thermodynamics to nonequilibrium, spatially inhomo- 
geneous systems. The constraints, which now com- 
prise the balances of mass, electric charge and the 
sourceless entropy, are multiplied by w’ rather than 
by -w’. This assures the identification w’ = u’ rather 
than -w’ = u’ at local equilibrium. New balance laws 
are built into the energy functional, equation (61), 
with the help of the vector of the Lagrangian mul- 
tipliers w’ = (wb, w’, , w;, . . . , w:_ 1, WA). The extremum 
value of the multiplier w’ in the energy function, equa- 
tion (61), is the vector of the kinetic conjugates u’ of 
the densities C’, equation (56). On the extremal sur- 
face of the energy functional (61), the vector w’ 
coincides with the transport potential vector u’, equa- 
tion (57), in the limiting situation of the local thermal 
equilibrium : 

w’=u’=(-T,~,,~, ,..., j&_,,-4). (62) 

This may be compared with the analogous equality in 
the entropy representation : 

w=u=(T-‘,ji,T-‘,/&T-I,..., 

/L-lT-‘, -q%T-I). (7) 

Again, away from local equilibrium w’ and u’ are 
generally two distinctive field variables in the ther- 
modynamic functional. 

It follows from equation (59) that, with the 
approach based on invariant dissipation intensity, the 
direct determination of the free-energy changes from 
the entropy or energy dissipation expressions is con- 
sistent only for systems with homogeneous T. This 
restricted availability of free-energy dissipation data 
from the popular entropy dissipation data by no 
means excludes the applications of Fto nonisothermal 



systems. Such applications involve, however, separate equivalent to the mass action kinetics of Guldberg 
methods of construction for general functionals of the and Waage. 
free energy, which is not discussed here. A simplified 
free-energy representation, applicable to thermally 
homogeneous systems, is still quite useful. From equa- 6. DISSIPATIVE HAMILTONIANS AND 

tion (59) the thermodynamic functional of the homo- POISSONIAN BRACKETS 

geneous free energy is For the rest of this text, it will be sufficient to only 

-F(t2) = min(-r(r,)+~:1*JXJ..u’).dAdt 
consider cases with a constant state at the system 
boundaries: thus, any possible surface terms in the 
functionals used will be ignored. Thermodynamic 

‘2 1 

s 1 
zL’-‘(u’):J’J+;L’(u’):vu’vu’ 

functionals gauged by subtraction of the four-diver- 
+ gence (d/at, V *) of a vector, here a/at(w,c,) + V .(wkJ&, 

l,,V 

+ iR’:rr+ $‘))I :(v’Tu’)(v’Tu’) 

or linear combinations of such four-divergences, have 
found some useful applications [ 11,721. In the case of 
fields, they lead directly to dissipative Hamiltonians, 
identical with those of Onsager’s discrete theory, thus 

+w’* 
&(u’) 
at +V*.I-v’r making possible related Hamiltonian formalisms and 

bracket formulations with only one type of bracket 

with J, = J, - TJ,, the relation which also follows from 
(Poissonian brackets). This seems interesting and 
important, since the bracket approaches, which stem 

equation (59). The following definitions apply : from dissipative generalizations of concepts of ideal 

J’ =(J1, J2,. . . , Jn_l,i)T (64) 
continua, use two sorts of brackets [27, 28, 301, and, 
as such, are not directly associated with extrema of 

c’=(c,,c2 )...) C,_,,O)= (65) definite physical quantities. 

u’=(p,,P2,..‘,A-1,~) (66) 
In the entropy representation, the thermodynamic 

functional, gauged as described above, has the general 

(i& = p.MkM;’ -&. In the linear theory, the matr- structure 

ices L’, u’ etc., of this representation are obtained from 
the matrices L’, u’ of the energy representation by s: = 

s 

12 
Az(J, u, r, w) dVdt. (71) 

rejection of entries corresponding to the entropy. t1.v 
However, in any nonlinear descriptions they are func- 
tions of the temperature T and contain T as a It takes into account all balance constraints. For the 

parameter. This is the frame where many practical present model, the ‘thermodynamic Lagrangian’ A% is 

kinetic relationships is imbedded. The variation of the 
above functional leads to the equations of diffusion, 
Ohm’s law of electrical conductivity and chemical kin- 

&(J,u,r,w) = :L-l(u): JJ 

etics in isothermal systems. 
The Euler-Lagrange equations of the free energy 

functional, equation (63), with respect to the variables 
w’, J’, r and u’ are, respectively, 

ad(d) 
~ +V*J’-v’r = 0 

at 

+ ;L(u) : VuVu+ +I :(v’~u)(v”u) 

+kR:rr -w’v’r-C(u):-J*Vw. (72) 

(67) 
The (w-indepedent) quantity containing the sum of 

L’(u’)-’ . J’ = VW’ (68) 
two dissipation functions for transports and chemical 
reactions : 

R(u’) * r = v’=w’ (69) L,(J,u,r) = :L-I(U): JJ+~L(u):VUVU 

g(u’) $ = V *&Vu’) - v’R- ’ A(u') +iR-’ :(~‘~u)(v’~u)+iR:rr (73) 

a V *(L’Vu’) - v’r. “‘=W’ (70) is also used which, per unaZogium with its classical 
mechanical counterpart, plays the role of a kinetic 

Here g = &‘(u’)/t%r is the positive Hessian of the iso- potential of the process. 
thermal free energy, and A = v%‘. The isothermal The minimum of the functional, equation (71) with 
transport equations, Ohm’s law for electric current, respect to the fluxes J and r, or the corresponding 
and isothermal chemical kinetics are contained in Euler-Lagrange equations, yields the representations 
these equations. Provided that local thermal equi- (in terms of w) of certain flux adjoints. Quantities of 
librium holds, i.e. u’ = w’, and the chemical resistances this sort were, to our knowledge, first investigated by 
R’ = RT [where R satisfies equation (29)], equation Vojta [87], although for a different L,. They may be 
(69) renresents Ohm’s law for chemical reactions. 

_. _ . 
\, A , called the ‘dissipative’ or ‘thermodynamic’ momenta : 

3478 S. SIENIUTYCZ 
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aL, p,raJ=L-‘J+ (74) 

(75) 

At a local thermal equilibrium, both of these quan- 
tities become thermodynamic forces, transports driv- 
ing gradients of u and chemical affinities, equation 
(34). One can also define the ‘thermodynamic Ham- 
iltonian’, a quantity related to the entropy production, 
as the time component G” of the energy-momentum 
tensor associated with the gauged Lagrangian AZ : 

(76) 

For Aa of equation (72), via extremum conditions 
(74) and (75), an extremal H, follows from equation 
(76). Such an extremal quantity is represented by the 
second line of equation (77). It is the field gen- 
eralization of the Onsager’s thermodynamic Ham- 
iltonian [88], which includes the nonlinear chemical 
kinetics : 

H, = -;L-+) :+L(u) :VUVU 

-;R-’ :(v’=u)(v’=u) 

-~R:IT+w~v’~+J.VW 

However, for variational dynamics of fields, a par- 
ticular representation of H, is essential in which the 
momenta are eliminated on account of the (gradients 
of) Lagrange multipliers of balance constraints [l 1, 
721. This is just the representation suitable for direct 
development of canonical equations and functional 
Poissonian brackets. Similar multipliers, which are 
used in the theory of perfect fluids (in the context of 
action approaches though), are known as the velocity 
potentials or Clebsch variables [3, 621. In the present 
case, the pertinent variables of H, are the coordinates 
of the static thermodynamic state (u or C) and Lag- 
range multipliers w. From equations (74), (75) and 
(78) 

= fL-l(u): JJ-iL(u):VuVu+iR:rr H,, = ; L(u) : VwVw - ; L(u) : VuVu 

+-’ :(v”u)(v’Tu). (77) 

Clearly, this dissipative Hamiltonian vanishes at 

+;R-’ :(v”w)(v”w)-;R-’ :(v”u)(v”u). (81) 

local equilibrium, as does its Onsagerian counterpart. 
In terms of the canonical variables 

H,, = ;L(u) :p,,pn--L(u) : VuVu 

In terms of the above Hamiltonian, the ther- 
modynamic integrals Sz, equations (37), (71) and 
(82), conform to the general structure of the field- 
theory actions having the Hamilton-Jacobi 
expressions as their integrands : 

+;R-’ :n,&R-’ :(v’=u)(v’=u). (78) 

The direct imbedding of Onsager’s H,, in the context 
of thermodynamic fields with nonlinear chemical kin- 
etics and quasilinear transports is meaningful. To ach- 
ieve this goal, it was more efficient to use the gauged 
structure, equation (72), than the original functional, 
equation (28). Also note that the extremal Lagrangian 
Af, equation (72), in terms of the extremal H, acquires 
the Hamilton-Jacobi structure 

S: = - 
s[ 

H&I, w, Vu, VW) + C(u) .$ 1 dx dt. 

For the heat and mass transfer theory, equation (82), 
and its particular form, equation (83), have a meaning 
analogous to that which the Hamilton-Jacobi equa- 
tion has in the mechanics of particle motion. Through 
the gradient and time derivative of the ‘eiconal’ w, 
these equations describe the relation between the 
‘wave fronts’ and the ‘rays’, the trajectories of the heat 
and mass diffusion. An equation of thermal rays is in 
our case the first Fourier-Fick law, equation (74), 
contained in equation (84). The temperature recipro- 
cal T-’ and the tilde Planck potentials are the velocity 
potentials for the thermal rays. For a thermally 
inhomogeneous, chemically reacting fluid field, a 
working form of the thermodynamic integral, equa- 
tion (82), is 

AT(J,r,u,w) = -C(u); -H,,(J,r,u). (79) 

which is essential for direct development offunctional 
canonical equations of the field theory [see equations 
(84), (86), (96) and (98)l. 

It follows from the definition of L,, equation (73), 
that the dissipative functions H, and L, are connected 
by the Legendre transformation 

Ho(pl,~,,,u) = %J+ %r-L.(J,r,u) 

= $v+ %r-L,(v,r,u) (80) 

where the momenta at pc and n, satisfy equations (74) 
and (75), whereas v is the velocity matrix whose entries 
v,~ = Jai/C, are transport velocities related to the fluxes 
Ji. As in mechanics, only the rate-type variables are 
subject to the Legendre transformation, whereas the 
static state u plays the role of a parameter vector. This 
is also in analogy with the lumped system ther- 
modynamics, where rates are not fields, but rather 
time derivatives of certain generalized displacements 
[13, 881. 

(82) 
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s; = - C(“).~+;L(“):VrVw 

- iL(“) : vuvu+ ;R-‘(V’=W)(V’TW) 

- ;R-’ :(v’=u)(v’=u) dxdt. 1 
From the viewpoint of the local equilibrium 

It incorporates the Fourier-Onsager transports, 
Ohm’s electric conductivity and nonlinear chemical 
kinetics of Guldberg and Waage. In effect, a quasi- 
canonical Poissonian bracket form 

(83) 

effect 

a(u)$ = V-(LVu)-v’R~‘A”(u). (87) 

(u = w), the state variables u used in this equation 
along with the Clebsch-like variables w describe the 
process in the simplest way possible. 

With the Hamiltonian, equation (81) the first 
canonical equation is obtained by taking the vari- 
ational (Volterra) derivative for the above action inte- 
gral with respect to the intensity vector : 

-a(u); = - 2 = -V*(LVu)+v’R-‘A”(u). 

(84) 

This is the vector representation of all equations of 
change. In the special case of pure heat transfer in a 
nonreacting continuum, one can introduce an energy 
diffusivity D, = La-‘. Since L = kT2 and a = pcyT-‘, 
in the local equilibrium limit, the quantity D, is the 
standard heat diffusivity : D, = k/(pc,). Moreover, 
since w approximates T-‘, the partial derivatives obey 
awpt E - T-2 aT/at and V2w g - T-‘V2T. Thus in 
the local equilibrium situation 

aT 
- = D,V2T 
at 

which is the second Fourier’s law. Note that the vari- 
ational principle yields an inherently nonequilibrium 
description, with w and u as independent variables. 
As previously, the local equilibrium assumption is the 
necessary extra postulate in the limiting transition to 
the second Fourier’s law in its traditional form. For 
unstable situations, with diverging w and u, such a 
postulate may be unacceptable. 

The second canonical equation or the stationarity 
condition of the integral Sz with respect to the vector 
w is the set of conservation equations for energy, mass 
and electric charge : 

at(u) cm, 
~ = 6w = -V-(LVw)+v’R-‘(v’~w) 

at 

= -V*J+v’r (86) 

where equations (74) and (75) have been exploited. 
The presence of the state-dependent properties in L, 
or H,, gives rise to nonlinear behavior. Note that the 
two canonical equations (84) and (86) coincide at the 
local equilibrium, and the resulting equation can be 
written in terms of the state variables u only, as the 
following nonlinear equation of change : 

-a(u)g = {w,H,} = - 2 (88) 

and 

(89) 

is valid for transports with chemical reactions 
described by the thermodynamic Hamiltonian, equa- 
tion (81). Consider equation (82) to conclude that an 
exact canonical form does involve densities C, rather 
than intensities uk. In the limiting state of a local 
equilibrium, the two equations (88) and (89) become 
identical, thus converging into the classical diffusion- 
reaction system described by nonlinear partial differ- 
ential equations. Through transformations of the 
Hamiltonian matrix the theory of Poissonian brackets 
allows transformations of the above field equations 
into various equivalent sets governed by noncanonical 
Poissonian brackets [89]. 

7. THERMOMECHANICS OF CHEMICAL 
REACTIONS IN DISPLACEMENT FIELDS 

Consider now an example in which the chemical 
reactions are coupled with mechanical processes, and 
the velocity of mechanical motion in a suitable frame, 
v, is an unknown variable which should be found 
along with the chemical progress variables. In the case 
of muscle contraction, the velocity refers to the frame 
of thin filaments. The concentrations and chemical 
advancement coordinates that are most commonly 
used in chemistry are the molar concentrations ci, 
and the progress variables C;,, which are related to the 
former. However, the search has substantiated the 
suitability of the concentrations defined as moles per 
unit mass of the mixture xi = c,/p and the related 
progress variables (chemical coordinates) rcj = up as 
those variables which are the most suitable in the 
analysis. For the standard formalism which uses as 
the field variables the reaction rate rj and the molar 
concentrations ci, the basic equations of constraint are 
those describing the mass balances of the species : 

J; = 2 +V-(c,vi)- i vVrj = 0 
j=l 

(90) 

However, a formalism will be used tracing chemical 
changes in terms of progress or chemical coordinates 
&, and then 
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(91) 

The quantities tj refer to the unit volume, and they 
should be distinguished from their global counterparts 
used in the lumped systems. Using the continuity 
equation for the whole mixture one can write equation 
(91) in an alternative form : 

P 

= 0 (92) 

which proves the integrability of equation (91) along 
a Lagrangian path whenever the diffusion effects can 
be ignored, i.e. for v = vi. Restricting to this case, the 
following integral is found : 

ctlP- : (viji,)/P = 8/p’ - 2 (vLj5,“)/Po (93) 
,=1 ,=I 

for each point on the Lagrangian path of a diffusion- 
less process. This equation substantiates the use of the 
concentrations xi = c,/p (mol kg-‘) and the chemical 
advancement coordinates ‘cj = Wp (mol kg-‘) as the 
most suitable variables in the description. This is the 
first constraining equation of the thermomechanical 
process. 

Further constraints preserve the identity of the fluid 
elements, for the fluid taken as a whole. They are 
known from the field theory of perfect fluids in the 
form expressing the constancy of its initial set of Lag- 
rangian coordinates, dX/dt = 0, or 

(94) 

(Possible ‘partial identity constraints’ are ignored.) 
When equation (94) is combined with the mass con- 
servation law 

^I 

ff +V*(pv) = 0 

(the mass density p = ~c,M, and the velocity 
v = p-‘ZciMivi) a canonical form of equation (94) can 
be obtained : 

ar 27 +v-(I-u) = 0 (96) 

where I = pX is the initial density related to X. The 
set of densities contains c, tj, and I = ax. We also 
use the density y = ,9x, such that the mass flux density 
J = pv is the four-divergence of y. 

The mechanical displacement vector for the ith 
species is 

E&t) = x-X,(x, t). (97) 

If rcj = lj/p is the chemical progress coordinate of the 
jth reaction, introduced on the basis of equation (93), 
then its initial or reference value, K, = [j/p’, is a 
function of the initial Lagrangian coordinates of the 
species, Xi. Since Xi = Xi(x, t), an initial field Kj(x, t) of 
rcj can be introduced. One can then define the chemical 
displacement field xj(x, t) for thejth reaction : 

x,(x, t) = IC,(X, t) - 4(x, t). (98) 

With xi = ci/p and ~~ = G/p, the integrated constraint, 
equation (93) can be written as 

xi- f (Vi,&) = xp. (99) 
i= I 

In a general case of a compressible medium, on the 
basis of the continuity equation (95) 

dX/ dW’5,) 
Pd,=P dt 

=,,(v!$+e,$ 

= p 
> 

= z +v.(ljv) (100) 

where v = p-’ is the specific volume. Accordingly, two 
representations of chemical rates, per unit volume and 
per unit mass, can be considered. They are linked by 
the formula 

r=Pr~=p(~+v.v7”j)=~+V.(~jv). (101) 

For the new resistances R;(x), defined as 
R;(x) = pR,(c) the chemical Ohm’s law expressed by 
displacements xi holds in the same form as the orig- 
inal : 

r’=dxjldt=Aj/RJ= -fv&R; j=l,...,N 
j=l 

(102) 

where R;(x) = pR,(c) is associated with R given by 
equation (4). This redefinition of resistances also fol- 
lows from the preservation of the classical Raleigh’s 
dissipation formula. 

The dissipation function of the Lagrangian picture 
of motion, and in coordinates x and K, is 

w = k&(x, k, x)(ax,/at);,, + g ~qX)(aKj,at);,X ,=I2 

(103) 

where x = (x, y, z), K = t/p, and x = c/p. As associ- 
ated function can be formed in terms of the dis- 
placements E and x of these coordinates, equations 
(97) and (98). 

However, instead of using an entropy functional 
similar to those of previous sections, which would use 
the dissipation function (103) and its transformation, 
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we shall here apply a different approach. This is a 
dissipative action approach in which the irreversibility 
effect is represented by the exponential term exp(t/r), 
the multiplicator of reversible Lagrangians. This term, 
which contains the average time between the colli- 
sions, r, increases in time when the system memory 
fades. Below is presented a Lagrangian and its cor- 
responding action integral of an isothermal mech- 
anochemical motion. Next, its application to the 
mechanochemistry of muscle contraction in the ref- 
erence frame of the stationary thin filament is 
considered. 

The starting Lagrangian of the thermomechano- 
chemical field has the general structure 

A= L(v,c,~,r,~,c,tj,r,vv,Vc,V5,Vr,x,t) 
i 

+f 4k I ( ack 
k=l 

at+v’(‘“k)- 1 j:, [Vkl (2 +vw,))l 
n+3 

+ 1 4; 

( 

$ +v*(vr,) )I1 e’l’ (104) I=n+ I 
where the nonprimed & (k = 1,2,. . . , n) refer to the 
multipliers of the mass constraints (partial actions), 
and the primed 4; (I = 1,2,3) to the particles identity. 
The above functional contains the kinetic potential 
density L in the form 

J2 1 L=p-~(~)~+~~(c):rr-~(~,vc,r,vr,x,t). 

(105) 

The functional (104) should be varied subject to the 
extra constraint CMkxk = 1. However, this constraint 
and the related multiplier R’ were eliminated by using 
the kinetic potential of unit mass in the modified form 

L’ = ; $ M,x,(v2+I’:(~+v~V~))(~+v~V~))-F’. 
k 1 

(106) 

An advantage of using L’ instead of L is that the 
correct value of the chemical potential for the moving 
continuum is achieved only when L is augmented 
to the constraint-absorbing form L, = L- W(1 + 
CM,x,), whereas for the Lagrangian L’ this property 
holds in any case. In the latter case, the constraint 
CM,x, = 1 can be taken into account after the pro- 
cedure is completed, However, the extremum con- 
ditions for L = SL not L’ are displayed below, since 
the former are more general, and the latter follow 
from the former as the special case when R’ = 0. 

The extremum conditions of the four-dimensional 
action integral based on the Lagrangian (104) and the 
kinetic potential (106) are 

6p: 

)I 
(107) 

n+3 

- c x,vc& = 0 (108) 
,=n+ 1 

6x, : 

6x, : g + i “k, 
J k=, ( 

c&k+$k+v.V$k =o 

) 

(110) 

+v* [Pv (xkp$, vkjxj)] = o (111) 

6x. 6~’ 84; 4; ,. sx-at-;-(VV)4;=0 (112) 
I 

Q, : a (Pm 
at +v-(px,) = 0 

6Q2: l-~Mixi=o. 
i= I 

(113) 

(114) 

They contain the correct result for the classical chemi- 
cal potentials pk = pLq - Mku2/2, regardless of the 
thermodynamic potential used [S-lo]. This correct 
result is obtained only when the Lagrangian L’ used 
to define & is modified by the constraint 
-Q’(l -ZMkxk). However, in the present case, one 
has to work in general with the extended chemical 
potentials 

pkG _!g= _{?p(E) 

_,aL a aL 
-’ 

-_- - ( )I a*k ax ax,,, . (115) 

In terms of the extended chemical potentials, equation 
(109) with Q’ = 0 (as referred to L’) reads 

&+&+r-‘&+v’V& = 0 k = 1 2 . , , ..,n. 

(116) 
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On elimination of the component actions & from 
equations (107)-( 11.0) and using the continuity equa- 
tion (93, the chemical rate is found in terms the 
affinity vector A = - vTp in the form 

(117) 

where r’ is the total time derivative of x, equation (98), 
and the resistance matrix obeys R’ = I’/z. The above 
equation belongs, of course, to the X-representation. 
An equivalent form in the t-representation results 
immediately from the above result. Since I’r’ = Ir and 
R’r’ = Rr, one finds the same structure as equation 
(117). On elimination of the actions 4 from equations 
(107)-( 110) [ 111, a J‘undamental equation of the mech- 
anical motion follows : 

a6r 16~’ -+--&+v(“.$“XVX(q atsv 

-& [XJ rg)]-.J [XjV (Z) 

-,;g, p(g]=o. (118) 

This result may be compared with a recent result [ 121 
derived by a different approach using the dissipation 
functions in lumped systems : 

zj2+pj(-i_~n,(a~i/ax)-F.,, = 0 (119) 

where ni are the mole numbers of the ith species in 
a lumped system. One may observe that the latter 
equation is a special case of the former when the 
classical Hamilton”s expression for the kinetic poten- 
tial of unit mass is taken for L’ of equation (118), and 
the vector calculus is applied to pass from the Eulerian 
to the Lagrangian picture of motion. 

The current task in muscle modeling tends to find 
a reasonable approximation of the above complex 
results, to make the formulae usable in biophysical 
applications. 
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